Publications

Refereed Conference Publications

  1. Lin, Y., Guan, J.*, Fang, W., Ying, M., and Su, Z. (2024). A Robustness Verification Tool for Quantum Machine Learning Models. In FM 2024 (pp. 403-421). Springer.
  2. Guan, J., Feng, Y., Turrini, A., and Ying, M. (2024). Measurement-based Verification of Quantum Markov Chains. In CAV 2024 (pp. 533-554). Springer.
  3. Huang, M., Guan, J.*, Fang, W., and Ying, M. (2024). Approximation Algorithm for Noisy Quantum Circuit Simulation. In DATE 2024 (pp. 1-6). IEEE.
  4. Guan, J., Fang, W., Huang, M., and Ying, M. (2023). Detecting Violations of Differential Privacy for Quantum Algorithms. In ACM CCS 2023 (pp. 2277-2291).
  5. Guan, J., Fang, W., and Ying, M. (2022). Verifying Fairness in Quantum Machine Learning. In CAV 2022 (pp. 408-429). Springer. (The only quantum paper in CAV 2022)
  6. Guan, J., Yu, N. (2022). A Probabilistic Logic for Verifying Continuous-time Markov Chains. In TACAS 2022. Springer.
  7. Guan, J., Fang, W., and Ying, M. (2021). Robustness Verification of Quantum Classifiers. In CAV 2021. Springer. (The only quantum paper in CAV 2021)
  8. Xu, M., Mei, J., Guan, J., and Yu, N. (2021). Model Checking Quantum Continuous-Time Markov Chains. In CONCUR 2021 (pp. 13:1-13:17). Schloss Dagstuhl. (The only quantum paper in CONCUR 2021)
  9. Bei, X., Chen, S., Guan, J., Qiao, Y., and Sun, X. (2020). From Independent Sets and Vertex Colorings to Isotropic Spaces and Isotropic Decompositions. In ITCS 2020. Schloss Dagstuhl.

Refereed Journal Publications

  1. Wang, Q., Guan, J., Liu, J., Zhang, Z., and Ying, M. (2022). New Quantum Algorithms for Computing Quantum Entropies and Distances. IEEE Transactions on Information Theory, 70(8), 5653-5680.
  2. Wang, Q., Zhang, Z., Chen, K., Guan, J.*, Fang, W., Liu, J., and Ying, M. (2022). Quantum Algorithm for Fidelity Estimation. IEEE Transactions on Information Theory, 69(1), 273-282.
  3. Bei, X., Chen, S., Guan, J., Qiao, Y., and Sun, X. (2021). From Independent Sets and Vertex Colorings to Isotropic Spaces and Isotropic Decompositions. SIAM Journal on Computing, 50(3), 924-971.
  4. Guan, J., Wang, Q., and Ying, M. (2021). An HHL-Based Algorithm for Computing Hitting Probabilities of Quantum Random Walks. Quantum Information & Computation, 21(5&6), 395-408.
  5. Guan, J., Feng, Y., and Ying, M. (2018). Decomposition of Quantum Markov Chains and Its Applications. Journal of Computer and System Sciences, 95, 55-68.
  6. Guan, J., Feng, Y., and Ying, M. (2018). Super-activating Quantum Memory with Entanglement. Quantum Information & Computation, 18(13&14), 1115-1124.
  7. Su, Z., Guan, J., and Li, L. (2018). Efficient Quantum Repeater with Respect to Both Entanglement-Concentration Rate and Complexity. Physical Review A, 97(1), 012325.
  8. Liu, S., Wang, X., Zhou, L., Guan, J., Li, Y., He, Y., Duan, R. and Ying, M., 2018. QSI> : A Quantum Programming Environment. In Symposium on Real-Time and Hybrid Systems (pp. 133-164). Springer, Cham.
  9. Liu S S, Zhou L, Guan J, et al. QSI ⟩ : a Quantum Programming Environment (in Chinese). Sci Sin Inform, 2017, 47: 1300–1315, doi: 10.1360/N112017-00095

Preprint

  1. Guan, J. (2024). Optimal Mechanisms for Quantum Local Differential Privacy. arXiv:2407.13516.
  2. Chen, K., Fang, W., Guan, J.*, Hong, X., Huang, M., Liu, J., Wang, Q., and Ying, M. (2022). VeriQBench: A Benchmark for Multiple Types of Quantum Circuits. arXiv:2206.10880.
  3. Guan, J., Feng, Y., and Ying, M. (2018). The Structure of Decoherence-Free Subsystems. arXiv:1802.04904.

Invited Talks

  1. Robustness Verification of Quantum Classifiers (2021.11.25), Nagoya University, Japan.
  2. Robustness Verification of Quantum Classifiers (2021.12.08), University of Science and Technology of China, China.